Add like
Add dislike
Add to saved papers

DACT2 Epigenetic Stimulator Exerts Dual Efficacy for Colorectal Cancer Prevention and Treatment.

DACT2, a tumor suppressor gene in various tumors, is frequently down-regulated via hypermethylation. We found DACT2 gene expressions were dramatically silenced (P = 0.002, n = 8) in our clinical colorectal cancer (CRC) tissues, and TCGA data revealed DACT2 hypermethylation correlated to CRC poor prognosis (P = 0.0129, HR = 0.2153, n = 248). Thus, by screening twelve nutritional compounds, we aimed to find out an effective DACT2 epigenetic stimulator to determine whether DACT2 epigenetic restoration could reverse CRC tumorigenesis. We found that kaempferol significantly increased DACT2 expressions up to 3.47-fold in three CRC cells (HCT116, HT29, and YB5). Furthermore, kaempferol remarkably decreased DACT2 methylation (range: 19.58%-67.00%, P < 0.01), while increased unmethylated DACT2 by 13.72-fold (P < 0.01) via directly binding to DNA methyltransferases DNMT1. By epigenetic reactivating DACT2 transcription, kaempferol notably inhibited nuclear β-catenin expression to inactivate Wnt/β-catenin pathway, which consequently restricted CRC cells proliferation and migration. Moreover, in AOM/DSS-induced CRC tumorigenesis, kaempferol-demethylated DACT2 effectively decreased tumor load (range: 50.00%-73.52%, P < 0.05). By determining the chemopreventive and chemotherapeutic efficacy of a novel DACT2 demethylating stimulator, we demonstrated that DACT2 epigenetic restoration could successfully slow down and reverse CRC tumorigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app