Add like
Add dislike
Add to saved papers

Tension-Dependent Stretching Activates ZO-1 to Control the Junctional Localization of Its Interactors.

Current Biology : CB 2017 December 19
Tensile forces regulate epithelial homeostasis, but the molecular mechanisms behind this regulation are poorly understood. Using structured illumination microscopy and proximity ligation assays, we show that the tight junction protein ZO-1 exists in stretched and folded conformations within epithelial cells, depending on actomyosin-generated force. We also show that ZO-1 and ZO-2 regulate the localization of the transcription factor DbpA and the tight junction membrane protein occludin in a manner that depends on the organization of the actin cytoskeleton, myosin-II activity, and substrate stiffness, resulting in modulation of gene expression, cell proliferation, barrier function, and cyst morphogenesis. Pull-down experiments show that interactions between N-terminal (ZPSG) and C-terminal domains of ZO-1 prevent binding of DbpA to the ZPSG, suggesting that force-dependent intra-molecular interactions regulate ZPSG binding to ligands within cells. In vivo and in vitro experiments also suggest that ZO-1 heterodimerization with ZO-2 promotes the stretched conformation and ZPSG interaction with ligands. Magnetic tweezers single-molecule experiments suggest that pN-scale tensions (∼2-4 pN) are sufficient to maintain the stretched conformation of ZO-1, while keeping its structured domains intact, and that 5-20 pN force is required to disrupt the interaction between the extreme C-terminal and the ZPSG domains of ZO-1. We propose that tensile forces regulate epithelial homeostasis by activating ZO proteins through stretching, to control the junctional recruitment and downstream signaling of their interactors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app