Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impaired vagus function in rats suppresses bile acid synthesis in the liver by disrupting tight junctions and activating Fxr-Fgf15 signaling in the intestine.

Bile acids (BAs) circulate between the liver and intestine, and regulate the homeostasis of glucose, lipid, and energy. Recent studies demonstrated an essential role of BAs in neurological diseases, suggesting an interaction between BAs and the nervous system. In the present study, we showed that impaired vagus function in rats induced by vagotomy resulted in an increase in bile flow without causing liver injury. The concentrations of unconjugated and glycine-conjugated BAs were increased in both serum and bile of rats after vagotomy, which was due to impaired tight junctions and thus increased passive absorption of BAs in the intestine. Vagotomy markedly suppressed the expression of the rate-limiting BA synthetic enzyme Cyp7a1, which was not due to activation of Fxr-Shp signaling in the liver, but due to activation of Fxr-Fgf15 signaling in the intestine. Furthermore, vagotomy produced a BA profile in the bile favorable for Fxr activation by decreasing tauro-β-muricholic acid, a natural Fxr antagonist, and increasing glyco-chenodeoxycholic acid, a natural Fxr agonist. In summary, the present study provides the first comprehensive analysis of the critical role of the vagus nerve in regulating BA metabolism and signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app