Add like
Add dislike
Add to saved papers

Prolonged use of alendronate alters the biology of cranial repair in estrogen-deficient rats' associated simultaneous immunohistochemical expression of TGF-β1+, α-ER+, and BMPR1B.

OBJECTIVES: TGF-β1 is a cytokine that may induce both osteoneogenesis through Runx-2 or fibrosis via the transcription of α-smooth muscle actin (α-SMA). Because it has been previously known that alendronate increases the level of TGF-β1 and that under the usual condition of bone metabolism the estrogen may prevent the fibrotic effect of TGF-β1, the aim of this study was to evaluate if alendronate alters the cellular differentiation process post calvarial surgery in estrogen-deficient specimens.

MATERIALS AND METHODS: A transosseous defect that was 5 mm in diameter was created on the calvarium of each of 32 female rats with previous ovarian-salpingo-oophorectomy. All defects were treated with autografts, and 16 rats received the administration of 1 mg/kg of alendronate three times a week until euthanasia on the 15th and 60th day post surgery. Histomorphometric and immunohistochemical analyses of the expression of TGF-β1, estrogen receptor alpha nuclear (α-ER), α-SMA, BMPR1B, and Runx-2 were performed, and ELISA was used to measure the level of estrogen.

RESULTS: All animals demonstrated low levels of estrogen post ovarian-salpingo-oophorectomy. The histological results demonstrated larger bone matrix deposition in specimens treated with alendronate on the 15th day post surgery. The result was associated with a higher co-expression of TGF-β1, BMPR1B, and Runx-2 when compared with the control group. In addition, on the 60th day post surgery, the increase of bone matrix deposition from 15th to 60th day was discrete in specimens treated with alendronate compared with the control group. This result coincided with the intense simultaneous expression of TGF-β1, α-ER, and α-SMA, whereas the expression of BMPR1B and Runx-2 decreased.

CONCLUSION: The prolonged administration of alendronate altered the cranial repair in ovarian-salpingo-oophorectomized specimens due to the simultaneous occurrence of low estrogen and the presence of TGF-β1+/α-ER+ inducing the presence of α-SMA+ , whereas BMPR1B and Runx-2 were suppressed.

CLINICAL RELEVANCE: The prolonged administration of alendronate alters osteoneogenesis and induces an unusual microenvironment in the bone that seems to imitate the physiological tissue damage that culminates in the loss of the functional layer of endometrium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app