Add like
Add dislike
Add to saved papers

Exploring the selectivity of inhibitor complexes with Bcl-2 and Bcl-XL: A molecular dynamics simulation approach.

B-cell lymphoma 2 (Bcl-2) family proteins are potential drug targets in cancer and have a relatively flat and flexible binding site. ABT-199 is one of the most promising selective Bcl-2 inhibitors, and A-1155463 selectively inhibits Bcl-XL. Although the amino acid sequences of the binding sites of these two inhibitors are similar, the inhibitors selectively bind the target protein. In order to determine the origin of the selectivity of these inhibitors, we conducted molecular dynamics simulations using protein-inhibitor modeling. We confirmed that ASP103 of Bcl-2 is a key residue and that hydrogen bonding between ASP103 and ABT-199 confers the Bcl-2 selectivity of this inhibitor. For Bcl-XL selectivity, the secondary structure of α-helix 3 is a key factor. PHE105, SER106, and LEU108 in the loose α-helix 3 interact with A-1155463 to confer Bcl-XL selectivity. These findings provide important insights into the molecular mechanisms of selective inhibitors of Bcl-2 family proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app