Add like
Add dislike
Add to saved papers

Urinary Bladder vs Gastrointestinal Tissue: A Comparative Study of Their Biomechanical Properties for Urinary Tract Reconstruction.

Urology 2018 March
OBJECTIVE: To evaluate the mechanical properties of gastrointestinal (GI) tissue segments and to compare them with the urinary bladder for urinary tract reconstruction.

METHODS: Urinary bladders and GI tissue segments were sourced from porcine models (n = 6, 7 months old [5 male; 1 female]). Uniaxial planar tension tests were performed on bladder tissue, and Cauchy stress-stretch ratio responses were compared with stomach, jejunum, ileum, and colonic GI tissue.

RESULTS: The biomechanical properties of the bladder differed significantly from jejunum, ileum, and colonic GI tissue. Young modulus (kPa-measure of stiffness) of the GI tissue segments was on average 3.07-fold (±0.21 standard error) higher than bladder tissue (P < .01), and the strain at Cauchy stress of 50 kPa for bladder tissues was on average 2.27-fold (±0.20) higher than GI tissues. There were no significant differences between the averaged stretch ratio and Young modulus of the horizontal and vertical directions of bladder tissue (315.05 ± 49.64 kPa and 283.62 ± 57.04, respectively, P = .42). However, stomach tissues were 1.09- (±0.17) and 0.85- (±0.03) fold greater than bladder tissues for Young modulus and strain at 50 kPa, respectively.

CONCLUSION: An ideal urinary bladder replacement biomaterial should demonstrate mechanical equivalence to native tissue. Our findings demonstrate that GI tissue does not meet these mechanical requirements. Knowledge on the biomechanical properties of bladder and GI tissue may improve development opportunities for more suitable urologic reconstructive biomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app