Add like
Add dislike
Add to saved papers

Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae.

Bioresource Technology 2018 Februrary
Salinity stress has been verified to be a successful approach to enhance lipid production in high-starch marine algae, and salinity-induced carbon flow switching has been proposed as an algal response specific to brackish water. With the aim of testing this assumption, Chlorella sorokiniana SDEC-18, a low-starch freshwater alga, was grown in BG11 medium with NaCl addition at various concentrations (0, 2, 5, 10, 20, and 30 g/L). The results showed that salinity stress promoted carbon redistribution and starch conversion to lipid. The most desirable lipid productivity of 19.66 mg/L·d occurred in the medium with 20 g/L NaCl, about 2.16 times as high as that in the BG11 medium control. Moreover, microalgae with salinity stress were able to produce biodiesel with a more suitable cloud point, due to a decrease in the saturated fatty acid content. This therefore confirms that low-starch freshwater microalgae can also carry out salinity-induced carbon flow switching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app