Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Postnatal Subacute Benzo(a)Pyrene Exposure Caused Neurobehavioral Impairment and Metabolomic Changes of Cerebellum in the Early Adulthood Period of Sprague-Dawley Rats.

Benzo(a)pyrene (BaP) is a widespread environmental contaminant that has been associated with neurotoxicity in mammals. It has strong toxic effects on the developing central nervous system. Cerebellum is associated with locomotor activity and anxiety behavior, but there is very little research about the toxic effects of BaP in cerebellum. The present study aims to investigate the global influence of BaP subacute exposure on the metabolome of rat cerebellum. Male neonatal rats (postnatal day 5) were divided into two groups: control group and BaP-treated group (2 mg/kg/day for 7 weeks). Open field test and transmission electron microscopy were performed to analyze neurobehavior and ultramicrostructure alteration. Gas chromatography-mass spectrometry (GC-MS) was used to analyze metabolites of the cerebellum in both groups. The results revealed that postnatal exposure to BaP promoted pathological changes in the cerebellum and increased locomotor and anxiety activities in early adulthood. Twenty differential significant metabolites were identified by multivariate statistical analysis. Further metabolic pathway impact analysis and network analysis suggested that the primary metabolic pathways affected included pathway involved in energy metabolism, methionine and cysteine metabolism, and glutathione metabolism. These findings suggest that BaP-induced cerebellum injury may be correlated with metabolic changes and provide an area to target to reduce the negative effects of BaP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app