Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Collagen VI suppresses fibronectin-induced enteric neural crest cell migration by downregulation of focal adhesion proteins.

The enteric nervous system (ENS) is a network of neurons and glia that are derived from enteric neural crest cells (ENCCs) and essential for regulating peristaltic activity of the colon. ENCCs migrate along the gastrointestinal tract to form the ENS, and disruption of ENCC motility leads to ENS disorders, such as Hirschsprung's disease. Previous ENCC-transplant experiments show that ENCCs can invade into isolated mouse intestines by age E13.5, but not after E15.5. We hypothesized that altered age-specific micro-environments in the intestine are responsible for ENCC invasion/migration. Here, we compared gene expression in the intestine between at E11.5 and E15.5 and identified 1355 differentially expressed transcripts. Among these, we found that genes encoding extracellular matrix (ECM) proteins were enriched. Notably, collagen VI (ColVI) family members were upregulated in the E15.5 mouse intestine at the mRNA and protein levels, whereas fibronectin (FN) was downregulated; however, both proteins showed colocalization at E15.5. To understand the mechanisms of ColVI and FN in ENCC migration, we examined neurosphere or individual ENCC-adherence capabilities toward the ECM. ColVI suppressed FN-induced ENCC spreading/migration, whereas ColVI induced morphologically narrow ENCC spreading and weak stress-fiber formation as compared with those with FN. Additionally, in ENCCs cultured on plates containing ColVI, the expression and phosphorylation of p130Cas , a members of focal adhesion complexes, was reduced. These data indicated an inhibitory role of ColVI in ENCC migration and suggested that ColVI suppression in the intestine might represent a novel therapeutic strategy for aganglionic colonic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app