Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Contact guidance diversity in rotationally aligned collagen matrices.

Acta Biomaterialia 2018 January 16
Cancer cell metastasis is responsible for approximately 90% of deaths related to cancer. The migration of cancer cells away from the primary tumor and into healthy tissue is driven in part by contact guidance, or directed migration in response to aligned extracellular matrix. While contact guidance has been a focus of many studies, much of this research has explored environments that present 2D contact guidance structures. Contact guidance environments in 3D more closely resemble in vivo conditions and model cell-ECM interactions better than 2D environments. While most cells engage in directed migration on potent 2D contact guidance cues, there is diversity in response to contact guidance cues based on whether the cell migrates with a mesenchymal or amoeboid migration mode. In this paper, rotational alignment of collagen gels was used to study the differences in contact guidance between MDA-MB-231 (mesenchymal) and MTLn3 (amoeboid) cells. MDA-MB-231 cells migrate with high directional fidelity in aligned collagen gels, while MTLn3 cells show no directional migration. The collagen stiffness was increased through glycation, resulting in decreased MDA-MB-231 directionality in aligned collagen gels. Interestingly, partial inhibition of cell contractility dramatically decreased directionality in MDA-MB-231 cells. The directionality of MDA-MB-231 cells was most sensitive to ROCK inhibition, but unlike in 2D contact guidance environments, cell directionality and speed are more tightly coupled. Modulation of the contractile apparatus appears to more potently affect contact guidance than modulation of extracellular mechanical properties of the contact guidance cue.

STATEMENT OF SIGNIFICANCE: Collagen fiber alignment in the tumor microenvironment directs migration, a process called contact guidance, enhancing the efficiency of cancer invasion and metastasis. 3D systems that assess contact guidance by locally orienting collagen fiber alignment are lacking. Furthermore, cell type differences and the role of extracellular matrix stiffness in tuning contact guidance fidelity are not well characterized. In this paper rotational alignment of collagen fibers is used as a 3D contact guidance cue to illuminate cell type differences and the role of extracellular matrix stiffness in guiding cell migration along aligned fibers of collagen. This local alignment offers a simple approach by which to couple collagen alignment with gradients in other directional cues in devices such as microfluidic chambers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app