Add like
Add dislike
Add to saved papers

Finite difference time domain modelling of a point-excited elastic plate radiating into an acoustic cavity.

Finite difference time domain (FDTD) models are developed to solve the vibroacoustic problem of a thin elastic plate undergoing point force excitation and radiating into an acoustic cavity. Vibroacoustic modelling using FDTD can be computationally expensive because structure-borne sound wavespeeds are relatively high and a fine spatial resolution is often required. In this paper a scaling approach is proposed and validated to overcome this problem through modifications to the geometry and physical properties. This allows much larger time steps to be used in the model which significantly reduces the computation time. Additional reductions in computation time are achieved by introducing an alternative approach to model the boundaries between the air and the solid media. Experimental validation is carried out using a thin metal plate inside a small reverberant room. The agreement between FDTD and measurements confirms the validity of both approaches as well as the FDTD implementation of a thin plate as a three-dimensional solid that can support multiple wave types. Below the lowest room mode, there are large spatial variations in the sound field within the cavity due to the radiating plate; this indicates the importance of having a validated FDTD model for low-frequency vibroacoustic problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app