Add like
Add dislike
Add to saved papers

Tim-3 Regulates Tregs' Ability to Resolve the Inflammation and Proliferation of Acute Lung Injury by Modulating Macrophages Polarization.

Shock 2018 October
We recently reported that CD4CD25 regulatory T cells (Tregs) contributed to the recovery of patients with acute lung injury (ALI) by upregulating T cell immunoglobulin and mucin-domain containing-3 (Tim-3). However, the molecular mechanism by which Tim-3 regulates Tregs' function in the resolution and fibroproliferation after ALI remains unknown. In this study, we adoptively transferred Tim-3Tregs or Tim-3Tregs into lipopolysaccharide -induced ALI mice model. Data demonstrated that Tim-3Tregs not only decreased indices of lung inflammation and injury but also mitigated lung fibrosis after ALI. Furthermore, we observed that the transfer of Tim-3Tregs led to M2-like macrophage differentiation as demonstrated by significantly upregulated levels of M2-associated phenotypic markers as well as downregulated expressions of M1-related markers in both the profibrotic lung tissue and sorted pulmonary monocytes after ALI. In addition, cytokines such as interleukin (IL)-10 and IL-4 were also upregulated in lung tissues after Tim-3Tregs transferring. In vitro experiments further demonstrated that cell-contact cocultures with Tregs lacking Tim-3 presented decreased polarization of M2-like macrophages partially mediated by a decreased expression and function of STAT-3. Therefore, these data demonstrate a previously unrecognized function of Tim-3 on Tregs in their ability to repress the fibroproliferation of ALI by inducing alternative macrophages polarization. Moreover, the data highlight that Tim-3Tregs-mediated induction of M2-like macrophages may be a novel treatment modality with transitional potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app