JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Functional Characterization of Insulation Effect for Synthetic Gene Circuits in Mammalian Cells.

ACS Synthetic Biology 2018 Februrary 17
Insulators are noncoding gene regulatory elements in eukaryotic genome, which function as chromatin partitioning boundaries, and block interference across different chromatin domains. To facilitate modular construction of synthetic gene circuit that is usually composed of multiple transcription cassettes, unwanted cross-regulations between different cassettes should be avoided. Here, we developed a quantitative method to characterize the functional effect of three insulators on the cross-regulations of six promoters in mammalian cells. We showed that the unwanted cross-regulations displayed a threshold-like effect, and the threshold position varied along with the context of promoters and insulators. We tested the function of insulators in both cascade and sensory switch circuits assembled in episomal plasmid vectors, and showed that the insulation effect was mainly revealed on the first regulatory layer of the cascade circuit. A deviation on the response curve of the sensory switch circuit with or without insulators was observed, but response intensity of some sensory switch circuits were not affected. Therefore, our results provided a general guide on the selection of insulators with varying promoters in episomal synthetic gene circuits in mammalian cells, which may be useful to reduce the effect of the unwanted cross-regulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app