Add like
Add dislike
Add to saved papers

Anticancer Properties of Halogenated Pyrrolo[3,2-d]pyrimidines with Decreased Toxicity via N5 Substitution.

ChemMedChem 2018 January 23
Halogenated pyrrolo[3,2-d]pyrimidine analogues have shown antiproliferative activity in recent studies, with cell accumulation occurring in the G2 /M stage without apoptosis. However, the mechanism of action and pharmacokinetic (PK) profile of these compounds has yet to be determined. To investigate the PK profile of these compounds, a series of halogenated pyrrolo[3,2-d]pyrimidine compounds was synthesized and first tested for activity in various cancer cell lines followed by a mouse model. EC50 values ranged from 0.014 to 14.5 μm, and maximum tolerated doses (MTD) in mice were between 5 and 10 mg kg-1 . This indicates a wide variance in activity and toxicity that necessitates further study. To decrease toxicity, a second series of compounds was synthesized with N5-alkyl substitutions in an effort to slow the rate of metabolism, which was thought to be leading to the toxicity. The N-substituted compounds demonstrated comparable cell line activity (EC50 values between 0.83-7.3 μm) with significantly decreased toxicity (MTD=40 mg kg-1 ). Finally, the PK profile of the active N5-substituted compound shows a plasma half-life of 32.7 minutes, and rapid conversion into the parent unsubstituted analogue. Together, these data indicate that halogenated pyrrolo[3,2-d]pyrimidines present a promising lead into potent antiproliferative agents with tunable activity and toxicity, and rapid metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app