Add like
Add dislike
Add to saved papers

Inflammatory and Physiological Consequences of Debridement of Fibrous Tissue after Volumetric Muscle Loss Injury.

Volumetric muscle loss (VML) injuries present chronic loss of muscle fibers followed by expansive fibrotic tissue deposition. Regenerative medicine therapies are under development to promote regeneration. However, mitigation of the expansive fibrous tissue is required for integration with the remaining muscle. Using a porcine VML model, delayed debridement of injury fibrosis was performed 3 months post-VML and observed for an additional 4 weeks. A second group underwent the initial VML and was observed for 4 weeks, allowing comparison of initial fibrosis formation and debrided groups. The following salient observations were made: (i) debridement neither exacerbated nor ameliorated strength deficits; (ii) debridement results in recurrent fibrotic tissue deposition of a similar magnitude and composition as acute VML injury; and (iii) similarly upregulated transcriptional fibrotic and transcriptional pathways persist 4 weeks after initial VML or delayed debridement. This highlights the need for future studies to investigate adjunctive antifibrotic treatments for the fibrosed musculature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app