Add like
Add dislike
Add to saved papers

Genome-wide discovery of tissue-specific miRNAs in clusterbean (Cyamopsis tetragonoloba) indicates their association with galactomannan biosynthesis.

Owing to the presence of 80% soluble dietary fibre, high protein content and high value gum, clusterbean (Cyamopsis tetragonoloba) has recently emerged as an economically important legume. The developing clusterbean seeds accumulate 90% galactomannans in the endosperm and, therefore, can be used as a model crop to understand galactomannan biosynthesis and its regulation. miRNAs are tiny master regulators of their corresponding target genes, resulting in variations in the amounts of their metabolic end products. To understand the role of these regulators in galactomannan biosynthesis regulation, small RNA libraries were prepared and sequenced from five tissues of clusterbean genotype RGC-936, and miRanalyzer and DSAP programs were used to identify conserved miRNAs and novel small RNAs. A total of 187 known and 171 novel miRNAs were found to be differentially expressed, of which 10 miRNAs were validated. A complicated network topology and 35% sharing of the target mRNAs between known and novel miRNAs suggest random evolution of novel miRNAs. The gene ontology (GO) annotation of potential target genes revealed the genes coding for signalling and carbohydrate metabolism (50.10%), kinases and other enzymes (20.75%), transcription factors (10.20%), transporters (8.35%) and other targets (10.6%). Two novel unigenes were annotated as ManS (mannosyltransferase/mannan synthase) and UGE (UDP- D-glucose 4-epimerase) and validated as targets for three novel miRNAs, that is Ct-miR3130, Ct-miR3135 and Ct-miR3157. Our findings reveal that these novel miRNAs could play an important role in the regulation of the galactomannan pathway in C. tetragonoloba and possibly other galactomannan-producing species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app