Add like
Add dislike
Add to saved papers

Template-based field map prediction for rapid whole brain B 0 shimming.

PURPOSE: In typical MRI protocols, time is spent acquiring a field map to calculate the shim settings for best image quality. We propose a fast template-based field map prediction method that yields near-optimal shims without measuring the field.

METHODS: The template-based prediction method uses prior knowledge of the B0 distribution in the human brain, based on a large database of field maps acquired from different subjects, together with subject-specific structural information from a quick localizer scan. The shimming performance of using the template-based prediction is evaluated in comparison to a range of potential fast shimming methods.

RESULTS: Static B0 shimming based on predicted field maps performed almost as well as shimming based on individually measured field maps. In experimental evaluations at 7 T, the proposed approach yielded a residual field standard deviation in the brain of on average 59 Hz, compared with 50 Hz using measured field maps and 176 Hz using no subject-specific shim.

CONCLUSIONS: This work demonstrates that shimming based on predicted field maps is feasible. The field map prediction accuracy could potentially be further improved by generating the template from a subset of subjects, based on parameters such as head rotation and body mass index. Magn Reson Med 80:171-180, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app