Add like
Add dislike
Add to saved papers

Prediction of Groundwater Level in Ardebil Plain Using Support Vector Regression and M5 Tree Model.

Ground Water 2018 July
The Ardebil plain, which is located in northwest Iran, has been faced with a recent and severe decline in groundwater level caused by a decrease of precipitation, successive long-term droughts, and overexploitation of groundwater for irrigating the farmlands. Predictions of groundwater levels can help planners to deal with persistent water deficiencies. In this study, the support vector regression (SVR) and M5 decision tree models were used to predict the groundwater level in Ardebil plain. The monthly groundwater level data from 24 piezometers for a 17-year period (1997 to 2013) were used for training and test of models. The model inputs included the groundwater levels of previous months, the volume of entering precipitation into every cell, and the discharge of wells. The model output was the groundwater level in the current month. In order to evaluate the performance of models, the correlation coefficient (R) and the root-mean-square error criteria were used. The results indicated that both SVR and M5 decision tree models performed well for the prediction of groundwater level in the Ardebil plain. However, the results obtained from the M5 decision tree model are more straightforward, more easily applied, and simpler to interpret than those from the SVR. The highest accuracy was obtained using the SVR model to predict the groundwater level from the Ghareh Hasanloo and Khalifeloo piezometers with R = 0.996 and R = 0.983, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app