Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Ankle muscle tenotomy does not alter ankle flexor muscle recruitment bias during locomotor-related repetitive limb movement in late-stage chick embryos.

In ovo, late-stage chick embryos repetitively step spontaneously, a locomotor-related behavior also identified as repetitive limb movement (RLM). During RLMs, there is a flexor bias in recruitment and drive of leg muscle activity. The flexor biased activity occurs as embryos assume an extremely flexed posture in a spatially restrictive environment 2-3 days before hatching. We hypothesized that muscle afferent feedback under normal mechanical constraint is a significant input to the flexor bias observed during RLMs on embryonic day (E) 20. To test this hypothesis, muscle afference was altered either by performing a tenotomy of ankle muscles or removing the shell wall restricting leg movement at E20. Results indicated that neither ankle muscle tenotomy nor unilateral release of limb constraint by shell removal altered parameters indicative of flexor bias. We conclude that ankle muscle afference is not essential to ankle flexor bias characteristic of RLMs under normal postural conditions at E20.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app