Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Strategy for Modeling the Electrostatic Responses of the Spectroscopic Properties of Proteins.

For better understanding and more efficient use of the spectroscopic probes (vibrational and NMR) of the local electrostatic situations inside proteins, appropriate modeling of the properties of those probes is essential. The present study is devoted to examining the strategy for constructing such models. A more well-founded derivation than the ones in previous studies is given in constructing the models. Theoretical analyses are conducted on two representative example cases related to proteins, i.e., the peptide group of the main chains and the CO and NO ligands to the Fe2+ ion of heme, with careful treatment of the behavior of electrons in the electrostatic responses and with verification of consistency with observable quantities. It is shown that, for the stretching frequencies and NMR chemical shifts, it is possible to construct reasonable electrostatic interaction models that encompass the situations of hydration and uniform electric field environment and thus are applicable also to the cases of nonuniform electrostatic situations, which are highly expected for inside of proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app