Add like
Add dislike
Add to saved papers

Radiation suppresses neointimal hyperplasia through affecting proliferation and apoptosis of vascular smooth muscle cells.

PURPOSE: To study the effect of x-ray radiotherapy on vascular smooth muscle cells (VSMCs) and elucidate the mechanisms in preventing neointimal hyperplasia of prosthetic vascular grafts.

MATERIALS AND METHODS: In model I, twelve mongrel dogs underwent revascularization with prosthetic grafts and half the dogs underwent irradiation of the grafts at 28 Gy. In model II, human VSMCs (hVSMCs) were maintained and divided into six groups to which external radiation was applied at six different doses: 0 Gy, 2 Gy, 8 Gy, 16 Gy, 24 Gy and 30 Gy. In both models, specimens were harvested and examined by using morphological, immunological, cellular and molecular methods.

RESULTS: After irradiation, the neointima thickness was significantly lower in irradiated groups (p≤0.01). The radiotherapy could up-regulate p27kip1 , and down-regulate proliferating cell nuclear antigen (PCNA) and S phase kinase associated protein 2 (Skp2). X-ray irradiation inhibits the proliferation of hVSMCs via acting on G1/S phase of cell cycle. The apoptosis of hVSMCs increased significantly with dose and time. The expression of PCNA and Skp2 were decreased after a first increasing trend with dose, but had a significant negative correlation with time. The expression of p27kip1 had a significant positive correlation with dose and time.

CONCLUSIONS: Postoperative external fractionated irradiation after prosthetic vessel replacement of the abdominal aorta suppressed the development of hyperplasia in the graft neointima in the short term. There was a prominent time- and dose-dependent inhibition of VSMC proliferation by radiation when it was administered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app