Add like
Add dislike
Add to saved papers

Novel Surface Molecular Functionalization Route To Enhance Environmental Stability of Tellurium-Containing 2D Layers.

Recent studies have shown that tellurium-based two-dimensional (2D) crystals undergo dramatic structural, physical, and chemical changes under ambient conditions, which adversely impact their much desired properties. Here, we introduce a diazonium molecule functionalization-based surface engineering route that greatly enhances their environmental stability without sacrificing their much desired properties. Spectroscopy and microscopy results show that diazonium groups significantly slow down the surface reactions, and consequently, gallium telluride (GaTe), zirconium telluride (ZrTe3 ), and molybdenum ditelluride (MoTe2 ) gain strong resistance to surface transformation in air or when immersed under water. Density functional theory calculations show that functionalizing molecules reduce surface reactivity of Te-containing 2D surfaces by chemical binding followed by an electron withdrawal process. While pristine surfaces structurally decompose because of strong reactivity of Te surface atoms, passivated functionalized surfaces retain their structural anisotropy, optical band gap, and emission characteristics as evidenced by our conductive atomic force microscopy, photoluminescence, and absorption spectroscopy measurements. Overall, our findings offer an effective method to increase the stability of these environmentally sensitive materials without impacting much of their physical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app