Add like
Add dislike
Add to saved papers

Reaction mechanism of hydrogen evolution catalysed by Co and Fe complexes containing a tetra-dentate phosphine ligand - a DFT study.

The reaction mechanism of the electro-catalytic proton reduction in neutral phosphate buffer enabled by mononuclear cobalt and iron complexes containing a tetra-dentate phosphine ligand (MP4 N2 , M = Fe, Co) has been elucidated by density functional calculations. The phosphate from the buffer was found to play a crucial role by coordinating to the metal and delivering a proton to the metal hydride in the H-H bond formation. For the more efficient cobalt catalyst, the starting species is a CoII complex with a hydrogen phosphate and a water molecule ligated at the two vacant coordination sites. Two sequential proton-coupled electron transfer reductions lead to the formation of a CoII -H intermediate with a dihydrogen phosphate ligand, and the reduction potentials for these two steps were calculated to be -0.58 V and -0.72 V, respectively. Subsequently, the H-H bond formation takes place via coupling of the CoII -H and the proton from the dihydrogen phosphate ligand. The total barrier was calculated to be 18.2 kcal mol-1 with an applied potential of -0.5 V, which can further decrease to only 11.2 kcal mol-1 with an applied potential of -0.8 V. When the phosphate is displaced by a water molecule, the total barrier for the dihydrogen formation increases by 7.3 kcal mol-1 . For the iron catalyst, the overall mechanism is essentially the same; however, the first reduction (FeII /FeI , potential of -1.13 V) is likely the rate-limiting step. The calculated results are in good agreement with the experimental data, which showed an onset potential of -0.50 V for the cobalt complex and -1.03 V for the iron complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app