Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis.

Biomaterials 2018 Februrary
Capillary networks surrounding skeletal muscle play an important role in not only supplying oxygen and nutrients but also in regulating the myogenesis and repair of skeletal muscle tissues. Herein, we model the early stages of 3D vascularized muscle fiber formation in vitro using a sequential molding technique to investigate interactions between angiogenesis of endothelial cells and myogenesis of skeletal muscle cells. Channelrhodopsin-2 C2C12 muscle fiber bundles and 3D vascular structures (600 μm diameter) were formed at 500 μm intervals in a collagen gel. Endothelial cells exhibited an emergent angiogenic sprouting behavior over several days, which was modulated by the muscle fiber bundle through the secretion of angiopoietin-1. Through a reciprocal response, myogenesis was also upregulated by interactions with the vascular cells, improving muscle contraction via angiopoetin-1/neuregulin-1 signaling. Moreover, continuous training of muscle tissue by optical stimulation induced significantly more angiogenic sprouting. This in vitro model could be used to better understand the formation of vascularized muscle tissues and to test the interactions between muscle growth, repair or training and angiogenesis for applications in tissue engineering and regenerative medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app