JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Red blood cell-like particles with the ability to avoid lung and spleen accumulation for the treatment of liver fibrosis.

Biomaterials 2018 Februrary
Micro-sized drug-carrier particles accumulate mainly in the lungs and nano-sized particles tend to accumulate in the liver and spleen. Here, we show that micro-particles designed to mimic red blood cells (RBCs) can overcome these limitations. The RBC-MPs created in this study have a unique intra-particle elasticity distribution (IED), enabling them to bend around the central axis of the RBC-like dent, enabling them to pass through pores smaller than their diameter, mechanically behaving as authentic RBCs. In contrast, spherical MPs (SPH-MPs) and RBC-MPs hardened by incorporating a siloxane network (SiO2 -RBC-MPs), could not. In addition to the IED, we discovered that the deformability also depends on the shape and average particle elasticity. RBC-MPs did not accumulate in the lungs and the spleen, but were targeted specifically to the liver instead. In contrast, non-RBC-MPs such as SPH-MPs and SiO2 -RBC-MPs showed heavy accumulation in the lungs and/or spleen, and were dispersed non-specifically in various organs. Thus, controlling the shape and mechanical properties of RBC-MPs is important for achieving the desired biodistribution. When RBC-MPs were loaded with a (TGF)-β receptor inhibitor, RBC-MPs could treat liver fibrosis without pneumotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app