Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres.

Astrobiology 2018 March
Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2 , OCS, CH3 SH, and CH3 SCH3 ), photochemistry involving these gases can drive haze formation at lower CH4 /CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH4 /CO2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH4 /CO2 ∼ 0.2, but at 30× the organic sulfur flux, the CH4 /CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4 /CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 μm, likely the most accessible CO2 feature on an Archean-like exoplanet. Key Words: Organic haze-Organic sulfur gases-Biosignatures-Archean Earth. Astrobiology 18, 311-329.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app