JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A Protective Role for Triacylglycerols during Apoptosis.

Biochemistry 2018 January 10
Triacylglycerols (TAGs) are one of the major constituents of the glycerolipid family. Their main role in cells is to store excess fatty acids, and they are mostly found within lipid droplets. TAGs contain acyl chains that vary in length and degree of unsaturation, resulting in hundreds of chemically distinct species. We have previously reported that TAGs containing polyunsaturated fatty acyl chains (PUFA-TAGs) accumulate via activation of diacylglycerol acyltransferases during apoptosis. In this work, we show that accumulation of PUFA-TAGs is a general phenomenon during this process. We further show that the accumulated PUFA-TAGs are stored in lipid droplets. Because membrane-residing PUFA phospholipids can undergo oxidation and form reactive species under increased levels of oxidative stress, we hypothesized that incorporation of PUFAs into PUFA-TAGs and their localization within lipid droplets during apoptosis limit the toxicity during this process. Indeed, exogenous delivery of a polyunsaturated fatty acid resulted in a profound accumulation of PUFA phospholipids and rendered cells more sensitive to oxidative stress, causing reduced viability. Overall, our results support the concept that activation of TAG biosynthesis protects cells from lipid peroxide-induced membrane damage under increased levels of oxidative stress during apoptosis. As such, targeting triacylglycerol biosynthesis in cancer cells might represent a new approach to promoting cell death during apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app