Add like
Add dislike
Add to saved papers

Molecular cloning, expression, purification and functional characterization of an antifungal cyclophilin protein from Panax ginseng .

Biomedical Reports 2017 December
Cyclophilins (CyPs), a member of peptidyl-prolyl cis-trans isomerases (PPIases), are ubiquitously distributed in organisms such as bacteria, yeast, plants and animals. CyPs have diverse biological functions, with some exhibiting antifungal and antiviral activities. In this study, Panax ginseng cyclophilin ( pgCyP ), a novel gene encoding an antifungal protein from Panax ginseng , was cloned, and its protein product was expressed in Escherichia coli , and then fractionated by affinity chromatography. The open reading frame of the pgCyP full-length coding sequence was found to encode a single-domain CyP-like protein of 174 amino residues with a calculated molecular weight of 18.7 kDa. The pGEX system was used to express pgCyP fused to glutathione S-transferase. After affinity purification, the protein showed a strong fungal resistance effect on Phytophthora cactorum . In addition, pgCyP showed high PPIase activity. To the best of our knowledge, the present study is the first successful effort to clone and characterize a CyP-like protein gene from Panax ginseng .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app