JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exosomes Mediate Intercellular Transmission of Porcine Reproductive and Respiratory Syndrome Virus.

Journal of Virology 2018 Februrary 16
Exosomes are small membrane-enclosed vesicles produced by various cells and actively released into the extracellular space. They participate in intercellular communication and transfer of biologically active proteins, lipids, and nucleic acids. Accumulating evidence suggests that exosomes derived from cells infected by some viruses selectively encapsulate viral proteins, genetic materials, or even virions to mediate cell-to-cell communication and/or virus transmission. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the global swine industry since the late 1980s. Recent studies have shown that major proteins secreted from PRRSV-infected cells are exosomal proteins and that the serum-derived exosomes from PRRSV-infected pigs contain viral proteins. However, the role of exosomes in PRRSV infection remains unclear. In this study, purified exosomes isolated from PRRSV-infected cells were shown with reverse transcription-PCR and mass spectrometry to contain viral genomic RNA and partial viral proteins. Furthermore, exosomes from PRRSV-infected cells established productive infection in both PRRSV-susceptible and -nonsusceptible cells. More importantly, exosome-mediated infection was not completely blocked by PRRSV-specific neutralizing antibodies. In summary, this study demonstrated that exosomes can mediate PRRSV transmission and are even resistant to antibody neutralization, identifying a potential immune evasion mechanism utilized by PRRSV. IMPORTANCE Exosomes have recently been characterized as bioactive vesicles that function to promote intercellular communication. The exosomes from virally infected cells containing altered compositions confer numerous novel functionalities. A study of the secretome of cells infected with PRRSV indicated that the exosomal pathway is strongly activated by PRRSV infection. Here, we demonstrate that PRRSV can utilize host exosomes to infect naive healthy cells. Furthermore, exosome-mediated viral transmission is largely resistant to PRRSV-specific neutralizing antibodies. Our study provides novel insights into an alternative mechanism of PRRSV transmission that can compromise the host's anti-PRRSV immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app