Add like
Add dislike
Add to saved papers

Nrf2 at the heart of oxidative stress and cardiac protection.

Physiological Genomics 2018 Februrary 2
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app