Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics.

Bioconjugate Chemistry 2018 January 18
Currently, nanomaterials are of widespread use in daily commercial products. However, the most-promising and potentially impacting application is in the medical field. In particular, nanosized noble metals hold the promise of shifting the current medical paradigms for the detection and therapy of neoplasms thanks to the: (i) localized surface plasmon resonances (LSPRs), (ii) high electron density, and (iii) suitability for straightforward development of all-in-one nanoplatforms. Nonetheless, there is still no clinically approved noble metal nanomaterial for cancer therapy and diagnostics. The clinical translation of noble metal nanoparticles (NPs) is mainly prevented by the issue of persistence in organism after the medical action. Such persistence increases the likelihood of toxicity and the interference with common medical diagnoses. Size reduction to ultrasmall nanoparticles (USNPs) is a suitable approach to promoting metal excretion by the renal pathway. However, most of the functionalities of NPs are lost or severely altered in USNPs, jeopardizing clinical applications. A ground-breaking advance to jointly combine the appealing behaviors of NPs with metal excretion relies on the ultrasmall-in-nano approach for the design of all-in-one degradable nanoplatforms composed of USNPs. Such nanoarchitectures might lead to the delivery of a novel paradigm for nanotechnology, enabling the translation of noble metal nanomaterials to clinics to treat carcinomas in a less-invasive and more-efficient manner. This Review covers the recent progresses related to this exciting approach. The most-significant nanoarchitectures designed with the ultrasmall-in-nano approach are discussed, and perspectives on these nanoarchitectures are provided.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app