Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Thyroid Hormone Inactivating Type 3 Deiodinase Is Essential for Optimal Neutrophil Function: Observations From Three Species.

Endocrinology 2018 Februrary 2
Neutrophils are essential effector cells of the innate immune system that have recently been recognized as thyroid hormone (TH) target cells. Cellular TH bioavailability is regulated by the deiodinase enzymes, which can activate or inactivate TH. We have previously shown that the TH inactivating enzyme type 3 deiodinase (D3) is present in neutrophils. Furthermore, D3 knockout (D3KO) mice show impaired bacterial killing upon infection. We hypothesized that D3 plays a role in neutrophil function during infection by actively regulating local TH availability. We measured TH concentrations in cerebrospinal fluid (CSF) from patients with bacterial meningitis and controls. Bacterial meningitis resulted in marked changes in CSF TH levels, characterized by a strong increase of thyroxine and reverse-triiodothyronine concentrations. This altered TH profile was consistent with elevated D3 activity in infiltrating neutrophils at the site of infection. D3 knockdown in zebrafish embryos with pneumococcal meningitis resulted in increased mortality and reduced neutrophil infiltration during infection. Finally, stimulated neutrophils from female D3KO mice exhibited impaired NADPH-oxidase activity, an important component of the neutrophil bacterial killing machinery. These consistent findings across experimental models strongly support a critical role for reduced intracellular TH concentrations in neutrophil function during infection, for which the TH inactivating enzyme D3 appears essential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app