Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Direct Activation of Angiotensin II Type 2 Receptors Enhances Muscle Microvascular Perfusion, Oxygenation, and Insulin Delivery in Male Rats.

Endocrinology 2018 Februrary 2
Angiotensin II receptors regulate muscle microvascular recruitment and the delivery of nutrients, oxygen, and insulin to muscle. Although angiotensin type 1 receptor antagonism increases muscle microvascular perfusion and insulin action, angiotensin type 2 receptor blockade markedly restricts muscle microvascular blood volume and decreases muscle delivery of insulin. To examine the effects of direct type 2 receptor stimulation using Compound 21 (C21) on microvascular perfusion, insulin delivery and action, and tissue oxygenation in muscle, overnight-fasted adult male rats were infused with C21 systemically. C21 potently increased microvascular blood volume without altering microvascular flow velocity or blood pressure, resulting in a net increase in microvascular blood flow in muscle. This was associated with a substantial increase in muscle interstitial oxygen saturation and insulin delivery into the skeletal and cardiac muscle. These effects were neutralized by coinfusion of the type 2 receptor antagonist or nitric oxide synthase inhibitor. Superimposing C21 infusion on insulin infusion increased insulin-mediated whole body glucose disposal by 50%. C21 significantly relaxed the preconstricted distal saphenous artery ex vivo. We have concluded that direct type 2 receptor stimulation markedly increases muscle microvascular perfusion through nitric oxide biosynthesis and enhances insulin delivery and action in muscle. These findings provide a physiologic mechanistic insight into type 2 receptor modulation of insulin action and suggest that type 2 receptor agonists might have therapeutic potential in the management of diabetes and its associated complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app