Add like
Add dislike
Add to saved papers

Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells.

Nanoscale 2017 December 15
Here we present for the first time polymer solar cells that incorporate biological material that show state of the art efficiencies in excess of 8%. The performance of inverted polymer solar cells was improved significantly after deposition of ZnO nanoparticles (ZnO-NPs) together with a thin deoxyribonucleic acid nanolayer and used as an electron extraction layer (EEL). The ZnO-NPs/DNA double layer improved the rectifying ratio, shunt resistance of the cells as well as lowering the work function of the electron-collecting contact. Importantly, the ZnO-NPs/DNA bilayer enhanced the power conversion efficiency of cells considerably compared to cells with EELs made of only DNA (improvement of 56% in relative terms) or only ZnO-NPs (improvement of 19% in relative terms) reaching a best power conversion efficiency of 8.5%. The ZnO-NPs/DNA double layer cells also outperformed ones made with one of the most efficient previous synthetic composite EELs (i.e. ZnO/PEIE(poly(ethyleneimine)-ethoxylated)). Since all fabrication procedures were carried out at low (<150 °C) or room temperature, we have applied the findings to flexible substrates as well as on glass obtaining a high PCE of 7.2%. The solar cells with the biological/metal-oxide composite EELs also delivered an improvement in the stability (∼20% in relative term) compared to that with ZnO-NPs only. All these findings show that natural materials, in this case DNA, the premium biological material, can be incorporated in organic semiconductor devices in tandem with inorganic devices delivering uncompromising levels of performance as well as significant improvements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app