JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Absence of specific alternatively spliced exon of CD44 in macrophages prevents colitis.

CD44 is a transmembrane molecule appearing in numerous isoforms generated by insertions of alternatively spliced variant exons (CD44v) and having various binding partners. CD44v7 on T cells was proposed to promote colitis by preventing T-cell apoptosis. Here we demonstrate that Cd44v7-deficient T cells - like Cd44 wild-type (Cd44WT ) T cells - provoked disease in two different colitis models: the model induced by CD4+ CD45RBhigh T-cell transfer into Rag2-deficient mice and a new model based on ovalbumin (OVA)-specific T-cell transfer into Rag-sufficient, OVA-challenged mice. In contrast, CD44v7 absence on macrophages in recipient mice prevented colitis. Prevention was associated with the downregulation of signal transducer and activator of transcription 3 (STAT3)-activating and Foxp3-counteracting interleukin-6 (IL-6), lower numbers of phospho-STAT3-containing lymphocytes, and higher Foxp3+ T-cell counts in the colon. Consequently, the protected colons showed lower IL-12, IL-1β expression, and decreased interferon-γ levels. Importantly, stimulation of T cells by Cd44v7-deficient macrophages induced upregulation of Foxp3 in vitro, while cotransfer of Cd44WT macrophages into Cd44v7-deficient mice reduced Foxp3+ T-cell counts and caused colitis. Accordingly, the CD44v7 ligand osteopontin, whose levels were elevated in Crohn's disease, specifically induced IL-6 in human monocytes, a cytokine also increased in these patients. We suggest macrophage-specific targeting of the CD44v7 pathway as a novel therapeutic option for Crohn's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app