Add like
Add dislike
Add to saved papers

Antibiotic Resistance Gene Detection in the Microbiome Context.

Within the past decade, microbiologists have moved from detecting single antibiotic resistance genes (ARGs) to detecting all known resistance genes within a sample due to advances in next generation sequencing. This has provided a wealth of data on the variation and relative abundances of ARGs present in a total bacterial population. However, to use these data in terms of therapy or risk to patients, they must be analyzed in the context of the background microbiome. Using a quantitative PCR ARG chip and 16S rRNA amplicon sequencing, we have sought to identify the ARGs and bacteria present in a fecal sample of a healthy adult using genomic tools. Of the 42 ARGs detected, 12 fitted into the ResCon1 category of ARGs: cfxA, cphA, bacA, sul3, aadE, blaTEM , aphA1, aphA3, aph(2')-Id, aacA/aphd, catA1, and vanC. Therefore, we describe these 12 genes as the core resistome of this person's fecal microbiome and the remaining 30 ARGs as descriptors of the microbial population within the fecal microbiome. The dominant phyla and genera agree with those previously detected in the greatest abundances in fecal samples of healthy humans. The majority of the ARGs detected were associated with the presence of specific bacterial taxa, which were confirmed using microbiome analysis. We acknowledge the limitations of the data in the context of the limited sample set. However, the principle of combining qPCR and microbiome analysis was shown to be helpful to identify the association of the ARGs with specific taxa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app