JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

VDAC1 and SERCA3 Mediate Progesterone-Triggered Ca2 + Signaling in Breast Cancer Cells.

Progesterone is a biphasic hormone whose confounding role in breast cancer cells involves an initial proliferative surge, followed by sustained growth arrest. Recently we reported that progesterone induces a time- and concentration-dependent release of reactive oxygen species and thus regulates the antiproliferative activity in the breast cancer cell line. Furthermore, the expression of p27, a crucial cell cycle control protein, was regulated by binding of progesterone on progesterone receptor B, thus leading to antiproliferative signaling via multiple signaling pathways including p53, PTEN, and antioxidant systems. Here, we performed an LC-MS/MS analysis of three different breast cancer cell lines. Bioinformatics data analysis and functional classification of proteins revealed a role of progesterone in calcium signaling in MCF-7 cells, and the major differentially expressed calcium regulators were S100A11, S100A10, calreticulin, VDAC1, SERCA3, and SERCA1. Later on we confirmed it by a cell-line-based system having a calcium cameleon sensor targeted at endoplasmic reticulum and found moderate calcium efflux from endoplasmic reticulum upon progesterone treatment. Real-time PCR, Western blot, and TMRM staining confirmed the role of calcium signaling regulators VDAC1 and SERCA3 in progesterone response. Taking together all of these results with our previous studies, we suggest that progesterone, by regulating important proteins involved in calcium signaling and transport, can modulate cell proliferation and cell death. Furthermore, our research may open new avenues for the hypothesis that surgery conducted during the luteal phase of the menstrual cycle might facilitate improved patient survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app