Add like
Add dislike
Add to saved papers

Vasorelaxant activities and the underlying pharmacological mechanisms of Gynura procumbens Merr. leaf extracts on rat thoracic aorta.

Inflammopharmacology 2017 November 29
Previous studies have investigated the cardiovascular activity of Gynura procumbens Merr. single-solvent extracts. The objective of this study was to evaluate the in vitro vasorelaxant properties and the underlying pharmacological mechanisms of serial extracts and fractions of Gynura procumbens (GP). The leaves of GP were serially extracted with petroleum ether, chloroform, methanol and water using the maceration method. Suspended aortic ring preparations were pre-contracted with phenylephrine (PE 1 µM), followed by cumulative addition of GP extracts (0.25-3 mg/mL). The petroleum ether extract (GPPE) was the most potent among the four extracts. Pre-incubation of endothelium-intact aorta with atropine (1 µM), indomethacin (10 µM), methylene blue (10 µM), propranolol (1 µM) and potassium channel blockers such as TEA (1 µM), glibenclamide (10 µM), 4-aminopyridine (1 µM) and barium chloride (10 mM) had no effect on GPPE-induced vasorelaxation. The vasorelaxant effect of GPPE was partly diminished by pretreatment of aortic rings preparations with L-NAME (10 µM) and even more so in endothelium-denuded aortic rings, indicating a minimal involvement of endothelium-dependent pathway in GPPE-induced vasorelaxation. The calcium-induced vasocontractions were antagonized significantly and concentration-dependently by GPPE in calcium free and high potassium medium. These results illustrate that Ca2+ antagonizing actions of GPPE in rat isolated aorta are comparable to that of verapamil and may be mainly responsible for its vasodilation effect. The antioxidant activity of GPPE supports its vasorelaxant effect by attenuating the production of deleterious free radicals and reactive oxygen species in the vasculature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app