Add like
Add dislike
Add to saved papers

Holography microscopy as an artifact-free alternative to phase-contrast.

Artifact-free microscopic images represent a key requirement of multi-parametric image analysis in modern biomedical research. Holography microscopy (HM) is one of the quantitative phase imaging techniques, which has been finding new applications in life science, especially in morphological screening, cell migration, and cancer research. Rather than the classical imaging of absorbing (typically stained) specimens by bright-field microscopy, the information about the light-wave's phase shifts induced by the biological sample is employed for final image reconstruction. In this comparative study, we investigated the usability and the reported advantage of the holography imaging. The claimed halo-free imaging was analyzed compared to the widely used Zernike phase-contrast microscopy. The intensity and phase cross-membrane profiles at the periphery of the cell were quantified. The intensity profile for cells in the phase-contrast images suffers from the significant increase in intensity values around the cell border. On the contrary, no distorted profile is present outside the cell membrane in holography images. The gradual increase in phase shift values is present in the internal part of the cell body projection in holography image. This increase may be related to the increase in the cell internal material according to the dry mass theory. Our experimental data proved the halo-free nature of the holography imaging, which is an important prerequisite of the correct thresholding and cell segmentation, nowadays frequently required in high-content screening and other image-based analysis. Consequently, HM is a method of choice whenever the image analysis relies on the accurate data on cell boundaries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app