Add like
Add dislike
Add to saved papers

Influence of imide-substituents on the H-type aggregates of perylene diimides bearing cetyloxy side-chains at bay positions.

Soft Matter 2017 December 14
A series of perylene-3,4:9,10-tetracarboxylic acid diimides (PDIs, namely TYR-PDI, AEP-PDI, CET-PDI, ANP-PDI and KOD-PDI), comprising long linear cetyloxy side-chains functionalized at the 1,7-bay positions and the different substituents (i.e., hydrophobic/hydrophilic segments) symmetrically linked at the two imide-positions of the perylene core were synthesized to investigate the influence of imide-substituent patterns on the aggregation behaviours of PDIs. The photophysical properties of these PDIs were studied by UV-Vis absorption, fluorescence and time-resolved photoluminescence spectroscopy. The differences in the photophysical properties of the PDIs indicate (i) blue-shifted and broadening absorption properties in both solution and thin-films, (ii) red-shifted and broadening fluorescence behavior at their emission maximum in solution, however, blue-shifted fluorescence behavior in thin-films, and (iii) obviously longer fluorescence life-times corresponding to the existence of rotationally displaced H-type aggregates. The formation of short-range ordered rod-like microstructures through face-to-face alignment of columnar rectangular H-type PDI aggregates was rationalized by scanning electron microscopy. The X-ray diffraction study revealed that the formation of well-defined columnar rectangular (Colrp ) H-type PDI aggregates indicated a nearly constant intracolumnar stacking distance of ∼3.9 Å for all PDIs. All of these findings were consistent with the formation of hydrophobic/hydrophilic interactions between the imide-substituents in addition to the strong hydrophobic π-π stacking interactions between the conjugated perylene cores, which were enforced in the H-type PDI aggregates that spontaneously self-organized into Colrp structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app