Add like
Add dislike
Add to saved papers

Layered double hydroxide anchored ionic liquids as amphiphilic heterogeneous catalysts for the Knoevenagel condensation reaction.

In recent years, great attention has been dedicated to the development of heterogeneous base catalysts providing a green and sustainable process in benign aqueous media. Herein, the ionic liquid modified layered double hydroxide (LDH) based catalysts of LDH-IL-Cn (n = 4, 8, 12) were prepared by adopting an exfoliation/assembly strategy, in which the ionic liquids (ILs) were covalently anchored onto the surface of LDH layers. The resulting LDH-IL-Cn were characterized by FT-IR, solid-state 13 C NMR, 29 Si CP/MAS NMR, 27 Al-MAS NMR, XRD, TG-DTA, BET, XPS, SEM, CO2 -TPD, contact angle experiments, etc. The catalytic performance of LDH-IL-C12 for the Knoevenagel condensation of a variety of aldehydes with ethyl cyanoacetate/malononitrile in H2 O at room temperature showed excellent yields and selectivities. Moreover, the base catalyst of LDH-IL-C12 can be easily recycled and reused for at least 5 times without the decrease of its catalytic efficiency. The scaled-up experiments revealed that the catalyst retained its efficiency and robustness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app