Add like
Add dislike
Add to saved papers

Modulation of Microtubule Dynamics Affects Brucella abortus Intracellular Survival, Pathogen-Containing Vacuole Maturation, and Pro-inflammatory Cytokine Production in Infected Macrophages.

The microtubule (MT) cytoskeleton regulates several cellular processes related to the immune system. For instance, an intricate intracellular transport mediated by MTs is responsible for the proper localization of vesicular receptors of innate immunity and its adaptor proteins. In the present study, we used nocodazole to induce MTs depolymerization and paclitaxel or recombinant (r) TIR (Toll/interleukin-1 receptor) domain containing protein (TcpB) to induce MT stabilization in bone marrow-derived macrophages infected with Brucella abortus . Following treatment of the cells, we evaluated their effects on pathogen intracellular replication and survival, and in pro-inflammatory cytokine production. First, we observed that intracellular trafficking and maturation of Brucella -containing vesicles (BCVs) is affected by partial destabilization or stabilization of the MTs network. A typical marker of early BCVs, LAMP-1, is retained in late BCVs even 24 h after infection in the presence of low doses of nocodazole or paclitaxel and in the presence of different amounts of rTcpB. Second, microscopy and colony forming unit analysis revealed that bacterial load was increased in infected macrophages treated with lower doses of nocodazole or paclitaxel and with rTcpB compared to untreated cells. Third, innate immune responses were also affected by disturbing MT dynamics. MT depolymerization by nocodazole reduced IL-12 production in infected macrophages. Conversely, rTcpB-treated cells augmented IL-12 and IL-1β secretion in infected cells. In summary, these findings demonstrate that modulation of MTs affects several crucial steps of B. abortus pathogenesis, including BCV maturation, intracellular survival and IL-12 secretion in infected macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app