Add like
Add dislike
Add to saved papers

A new model of skeletal muscle atrophy induced by immobilization using a hook-and-loop fastener in mice.

[Purpose] To study muscle atrophy, the muscle atrophy model mice have been used frequently. In particular, cast immobilization is the most common method to induce muscle atrophy. However, it is time consuming and often causes adverse events including skin injury, edema, and necrosis. The present study, we developed a hook-and-loop fastener (Velcro) immobilization method as a new, simple, and less invasive approach to induce muscle atrophy. [Subjects and Methods] Mice were bandaged in the knee joint extension and ankle plantar extension position. Muscle atrophy was induced by either winding a cast or Velcro around the limb. [Results] According to weight and fiber size, Velcro immobilization induced equivalent muscle atrophy to cast immobilization. Velcro immobilization reduced significantly the time for the procedure and the frequency of adverse events. [Conclusion] Velcro immobilization can induce muscle atrophy comparable to cast immobilization, but in a shorter time and with less complications. Velcro immobilization may contribute to the study of disuse muscle atrophy in clinical practice of physical therapy using a mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app