Add like
Add dislike
Add to saved papers

A new strategy for battling bacterial resistance: Turning potent, non-selective and potentially non-resistance-inducing biocides into selective ones.

Antibiotic alternatives are in great need for combating antibiotic resistance. Selective delivery of a potent non-selective non-resistance-inducing biocide (C17) to MRSA was achieved by encapsulating it in solid lipid nanoparticles (SLNs) conjugated with a MRSA-specific antibody (termed as "Ab"). The C17-loaded Ab-conjugated SLNs (C17-SLN-Ab) demonstrated significantly better antimicrobial activity than its antibody free counterpart (C17-loaded SLN) and C17-loaded SLN with a non-specific IgG antibody. In a new MRSA/fibroblast co-culture assay, C17-SLN-Ab showed selective toxicity toward MRSA than fibroblast cells. C17-SLN-Ab possesses double selectivity, exhibiting higher toxicity to MRSA than to Pseudomonas aeruginosa. This same strategy was used to successfully increase C17's selectivity against E. coli K12 by switching the conjugated anti-MRSA antibody to an anti-E. coli antibody, demonstrating versatility of this new strategy. This proof-of-concept research can be extended to other non-selective antimicrobials, against which bacterial resistance is unlikely to develop, to generate a new group of promising antibiotic alternatives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app