Add like
Add dislike
Add to saved papers

The role of ethyl acrylate induced GSH depletion in the rodent forestomach and its impact on MTD and in vivo genotoxicity in developing an adverse outcome pathway (AOP).

Adverse outcome pathways (AOP) and mode of action (MOA) frameworks help evaluate the toxicity findings of animal studies and their relevance to humans. To effectively use these tools to improve hazard identification and risk assessments for ethyl acrylate (EA), knowledge gaps in metabolism and genotoxicity were identified and addressed. For EA, hypothesized early key events relate to its irritation potential: concentration dependent irritation and cytotoxicity, progressing to regenerative proliferation and forestomach carcinogenicity after repeated oral bolus application in rodents. The current research quantitated glutathione (GSH) depletion to assess a kinetically-derived maximum tolerated dose (MTD) in the target tissue and used this information to conduct an in vivo genotoxicity study using current methods. In the mouse forestomach, gavage doses of EA caused GSH depletion to 47% of control at 20 mg/kg and 28% at 100 mg/kg. Cellular redox changes and histopathology support saturation of metabolism and an MTD of ∼50 mg/kg. No increases in point mutations or deletions occurred in the stomach or liver following a 28 day treatment of gpt delta transgenic mice at gavage doses up to 50 mg/kg/day. These results provide valuable information for evaluating AOP molecular initiating events or MOA key events for EA and other GSH depleting materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app