Add like
Add dislike
Add to saved papers

Suitable reference genes for accurate gene expression analysis in Papaver rhoeas under 2,4-D herbicide stress.

Resistance to 2,4-D (2,4-diclorophenoxyacetic acid) herbicide is increasing in various dicotyledonous weed species, including Papaver rhoeas, a weed infesting Southern European wheat crops. Non-target-site resistance to this herbicide is governed by a range of genes involved in herbicide stress response. To enable reliable measurement of gene expression levels in herbicide-resistant and susceptible plants it is necessary to normalize qPCR data using internal control genes with stable expression. In an attempt to find the best reference genes, the stability of seven candidate reference genes was assessed in plants resistant and susceptible to 2,4-D, subjected or not to herbicide stress. Using three statistical algorithms (geNorm, BestKeeper and NormFinder), the overall results revealed that glyceraldehyde-3-phosphate dehydrogenase, actin and ubiquitin were the most stable reference genes. The normalization expression levels of GH3 (indole-3-acetic acid amido synthetase) and GST3 (glutathione S-transferase) which are two genes up-regulated following 2,4-D treatment, were determined to verify the stability of these selected reference genes. A sudden increase in GH3 and GST3 expression was already detected 5h after herbicide application, confirming their involvement in plant response to 2,4-D. The validation results confirmed the applicability and accuracy of these reference genes. This study identified and validated reference genes in the non-model weed species P. rhoeas and these will facilitate gene expression analysis studies aimed at identifying functional genes associated with non-target-site resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app