Add like
Add dislike
Add to saved papers

Characterization of glutathione S-transferases in the detoxification of metolachlor in two maize cultivars of differing herbicide tolerance.

Glutathione S-transferases (GSTs) have been widely studied in relation to their role in herbicide tolerance and detoxification. However, a detailed characterization of GSTs from herbicide tolerant and sensitive maize cultivars is still lacking. In this study, we determined the mechanism of differential tolerance between two maize cultivars which had 4-fold difference tolerance to metolachlor. The metabolism rate of metolachlor was more rapid in the tolerant cultivar (Zea mays L. cv Nongda86) than the susceptible one (Zea mays L. cv Zhengda958). Addition of the GST inhibitor ethacrynic acid reduced the metabolism of metolachlor indicating the involvement of GSTs in the differential detoxification of metolachlor. The expression profiles of 32 GST isozymes were measured using quantitative RT-PCR. The results showed the expression of GST genes were slightly up-regulated in Nongda86, but severely inhibited in Zhengdan958 24h after metolachlor treatment. The genes GSTI, GSTIII, GSTIV, GST5, GST6 and GST7, which can detoxify chloroacetanilide herbicides, were all expressed higher in Nongda86 compared to Zhendgan958. The result of GST activity was consistent with the gene expression profiles. Collectively, higher-level expression of GST genes, leading to higher GST activity and faster herbicide detoxification, appears to be responsible for the difference in tolerance to metolachlor in two maize cultivars.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app