Add like
Add dislike
Add to saved papers

Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crus-galli var. zelayensis.

Quinclorac, an auxin-type herbicide, is widely used to control barnyardgrass and some dicotyledon weeds. Echinochloa crus-galli var. zelayensis, a variety of E. crus-galli (L.) Beauv., is widespread in China and some populations have resistance to quinclorac. E. crus-galli var. zelayensis seeds with varying sensitivity to quinclorac were used in the present study. The expression of the ADP/ATP carrier protein (ANT) gene, which plays an important role in the maintenance of cellular energy balance, dramatically rose in the S biotype after exposure to quinclorac, while no change was found in two R biotypes. The activity of β-cyanoalanine synthase (β-CAS), which is the key enzyme for cyanide degradation, was higher in two R biotypes than in the S biotype before and after treatment with quinclorac. One single-nucleotide difference was detected in the EcCAS gene of two R biotypes compared with the S biotype. The nucleotide change, which caused one amino acid substitution, replacing Methionine (Met)-295 with Lysine (Lys)-295 in the two R biotypes, which are same as the rice β-CAS gene at this position. In addition, EcCAS gene expression was higher in the two R biotypes than in the S biotype. In conclusion, β-CAS may play a crucial role in the resistance of E. crus-galli var. zelayensis to quinclorac. EcCAS gene mutation and higher gene expression may enhance the activity of β-CAS to avoid the accumulation of toxic cyanide in resistant populations, thus contributing to the resistance mechanism of E. crus-galli var. zelayensis. to quinclorac.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app