Add like
Add dislike
Add to saved papers

Predicting cancer type from tumour DNA signatures.

Genome Medicine 2017 November 29
BACKGROUND: Establishing the cancer type and site of origin is important in determining the most appropriate course of treatment for cancer patients. Patients with cancer of unknown primary, where the site of origin cannot be established from an examination of the metastatic cancer cells, typically have poor survival. Here, we evaluate the potential and limitations of utilising gene alteration data from tumour DNA to identify cancer types.

METHODS: Using sequenced tumour DNA downloaded via the cBioPortal for Cancer Genomics, we collected the presence or absence of calls for gene alterations for 6640 tumour samples spanning 28 cancer types, as predictive features. We employed three machine-learning techniques, namely linear support vector machines with recursive feature selection, L 1 -regularised logistic regression and random forest, to select a small subset of gene alterations that are most informative for cancer-type prediction. We then evaluated the predictive performance of the models in a comparative manner.

RESULTS: We found the linear support vector machine to be the most predictive model of cancer type from gene alterations. Using only 100 somatic point-mutated genes for prediction, we achieved an overall accuracy of 49.4±0.4 % (95 % confidence interval). We observed a marked increase in the accuracy when copy number alterations are included as predictors. With a combination of somatic point mutations and copy number alterations, a mere 50 genes are enough to yield an overall accuracy of 77.7±0.3 %.

CONCLUSIONS: A general cancer diagnostic tool that utilises either only somatic point mutations or only copy number alterations is not sufficient for distinguishing a broad range of cancer types. The combination of both gene alteration types can dramatically improve the performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app