Add like
Add dislike
Add to saved papers

Enhanced Efficiency and Long-Term Stability of Perovskite Solar Cells by Synergistic Effect of Nonhygroscopic Doping in Conjugated Polymer-Based Hole-Transporting Layer.

A face-on oriented and p-doped semicrystalline conjugated polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole)] (PPDT2FBT), was studied as a hole-transport layer (HTL) in methylammonium lead triiodide-based perovskite solar cells (PVSCs). PPDT2FBT exhibits a mid-band gap (1.7 eV), high vertical hole mobility (7.3 × 10-3 cm2 /V·s), and well-aligned frontier energy levels with a perovskite layer for efficient charge transfer/transport, showing a maximum power conversion efficiency (PCE) of 16.8%. Upon doping the PPDT2FBT HTL with a nonhygroscopic Lewis acid, tris(pentafluorophenyl)borane (BCF, 2-6 wt %), the vertical conductivity was improved by a factor of approximately 2, and the resulting PCE was further improved up to 17.7%, which is higher than that of standard PVSCs with 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) as an HTL. After BCF doping, the clearly enhanced carrier diffusion coefficient, diffusion length, and lifetime were measured using intensity-modulated photocurrent and photovoltage spectroscopy. Furthermore, compared to the standard PVSCs with spiro-OMeTAD, the temporal device stability was remarkably improved, preserving the ∼60% of the original PCE for 500 h without encapsulation under light-soaking condition (1 sun AM 1.5G) at 85 °C and 85% humidity, which is mainly due to the highly crystalline conjugated backbone of PPDT2FBT and nonhygroscopic nature of BCF. In addition, formamidinium lead iodide/bromide (FAPbI3-x Brx )-based PVSCs with the BCF-doped PPDT2FBT as an HTL was also prepared to show 18.8% PCE, suggesting a wide applicability of PPDT2FBT HTL for different types of PVSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app